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We study the effectiveness of recovery strategies for a dynamic model of failure spreading in networks.
These strategies control the distribution of resources based on information about the current network state and
network topology. In order to assess their success, we have performed a series of simulation experiments. The
considered parameters of these experiments are the network topology, the response time delay, and the overall
disposition of resources. Our investigations are focused on the comparison of strategies for different scenarios
and the determination of the most appropriate strategy. The importance of prompt response and the minimum
sufficient quantity of resources are discussed as well.
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I. INTRODUCTION

The efficient distribution of resources is a challenging
problem relevant for many types of complex networks. The
examples include social networks �1�, power transmission
grids �2�, communication systems �3,4�, and road infrastruc-
tures �5�. Physicists, in recent years, have studied their struc-
ture and considerably contributed to the understanding of
processes going on in these networks. The efficient immuni-
zation against the epidemic spreading of diseases and strate-
gies for failure prevention are important topics with many
practical implications in real systems. Scientists have re-
cently demonstrated the benefits of targeted �6–8� and ac-
quaintance immunization �9� in scale-free networks, have
studied the applicability of “flooding” dissemination strate-
gies based only on local information �10�, and have proposed
efficient strategies for eliminating cascading effects in net-
works �11,12�.

In contrast to these works, we would like to focus on
interdependent systems and on the spreading dynamics of
disastrous events between the networked components. Disas-
trous events have impacted mankind from the earliest days.
The ability to recover the functionality of damaged infra-
structures promptly is crucial for survival, and determines
whether the affected areas will overcome the consequences
of catastrophe or not. Emergency response and recovery call
for external resources, which are limited, and, therefore, have
to be deployed as efficiently as possible. The question of
how to effectively distribute resources in order to fight disas-
ters best has already been addressed by many researchers. As
examples, we mention the redistribution of medical material
�13�, the mitigation of large-scale forest fires �14�, and the
fighting of floods �15�.

An experimental study of disasters under real world con-
ditions is almost impossible, and therefore mathematical and
computer models are often very helpful tools to extend hu-
man knowledge. However, the complexity of systems struck

by disasters does not allow one to model the interactions of
all involved entities and processes in detail. Therefore, we
have to capture them by an appropriate generic model. Di-
sastrous events are often characterized by cascading failures
�16� propagating in the system due to the causal dependen-
cies between system components. These casual dependencies
result from structural and functional interdependencies and
can be modeled by directed networks. Note that there have
been several attempts to quantify such networks for particu-
lar cases, using interaction network approaches �17� or fuzzy
cognitive maps �18�. Loops in these networks are crucial,
since the amplification of negative effects through the loops
may considerably deteriorate the situation. Such loops are
sometimes called “vicious circles.”

The above mentioned view of disasters has led us to the
formulation of a general spreading model of failures in net-
works �19�. To assess the importance of the availability of
information about the network for the efficiency of disaster
recovery, in this paper we will study the effect of different
protection strategies. These strategies are based on different
information evaluation and control the distribution of re-
sources over the system components. As parameters in our
model, we consider the overall quantity of resources R, the
recovery time delay �start, and the network topology Mij. As
our simulations did not give qualitatively different results for
varying link weights Mij, we will not discuss the case of
heterogeneous network links in this paper. Our presented
simulation results rather focus on the average efficiency of
the considered strategies and on the worst-case scenario,
which is given by the most unfriendly realization of all ran-
dom parameters.

Our paper is organized as follows. Section II presents our
mathematical model of disaster spreading. In Sec. III, we
describe the mobilization process of resources. Disaster re-
covery modeling issues and protection strategies are dis-
cussed in Sec. IV, while the results of our computer simula-
tions are presented in Sec. V. To conclude this paper, Sec. VI
summarizes the most important findings and outlines pos-
sible directions of future research.*Electronic address: buzna@vwi.tu-dresden.de
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II. MODELING THE DYNAMICS OF DISASTER
SPREADING

In this section, we briefly summarize our model of disas-
ter spreading originally proposed in �19�. The model is based
on a graph G= �N ,S� of interconnected system components
i�N= �1, . . . ,n�. The directed links �i , j��S, with i , j�N,
represent structural and functional dependencies between the
components. The state of a node i at time t is described by a
continuous variable xi�t��R, where xi=0 corresponds to a
normal functioning of the component. The deviation from
this state, caused by disturbances, represents the level of
challenge of system component i. At the present stage of
abstraction, we do not consider diverse functionalities of the
components, and we assume an additive impact of external
disturbances coming from neighboring components.

Each real system exhibits a natural level of resistance to
challenges. We reflect this tolerance by a special threshold
�i�0 and assume that a node tends to fail when the sum of
all disturbances acting on it exceeds this value �15�. Rather
than using a discontinuous step function, we describe this by
the sigmoidal function

��y� =
1 − exp�− �y�

1 + exp�− ��y − �i��
, �1�

where � is a gain parameter.
The interactions between the components are quantified

by the connection strengths Mij and by the link transmission
time delays tij �0. The overall dynamics of a node is then
given by

dxi

dt
= −

xi

�i
+ ���

i�j

Mjixj�t − tji�
f�Oj�

e−�tji	 , �2�

where the first term on the right-hand side models the ability
of component i to recover from perturbations and the second
term describes the superposition of all perturbative influ-
ences by adjacent nodes j on node i. If xi�0, the recovery
term tends to drive xi back to zero. The recovery rate 1 /�i
characterizes the speed of the recovery process at node i
�N. The function f�Oj�= �aOj� / �1+bOj� introduces an ad-
ditional weight to reflect that the impact of highly connected
neighboring nodes is smaller, because their influence is dis-
tributed among many nodes and in this way dissipated �20�.
Oj is the out-degree of node j, while a=4 and b=3 are fit
parameters.

The disturbances, as they are transmitted over the links,
can be strengthened or weakened by different factors, such
as, for instance, the time delays or physical properties of the
surroundings. The intensity of this process can, in our model,
be controlled by the parameter �. In the experiments we have
used �=0.025, which corresponds to relatively weak damp-
ing of disturbances on links.

A. Setup of our simulation experiments

Our simulation studies were performed for four types of
directed networks representing different systems. Specifi-
cally, we have studied networks such as regular �grid� net-
works, random networks, scale-free networks, and small-
world networks.

Only regular �grid� networks were specified with bidirec-
tional links. The directed scale-free networks were generated
using the algorithm by Bollobás et al. �21�, where the attach-
ment of a new node is controlled by the probabilities �1, �1,
and �1 with �1+�1+�1=1 and by the non-negative param-
eters �in and �out. These parameters have been set to �1
=0.1, �1=0.8, �1=0.1, �in=2, and �out=2.

Small-world networks have been generated using the pro-
cedure described in Ref. �22�. This procedure slightly gener-
alized the generation of undirected small-world graphs pro-
posed by Watts and Strogatz �23�. In contrast to their original
algorithm, we have randomly assigned directions to links,
with probabilities for clockwise and counterclockwise direc-
tion of 0.3 each, while a bidirectional link has been assumed
with probability 0.4. Finally, a random rewiring procedure
with rewiring probability p=0.3 has been applied.

In addition, we have generated random networks of the
Erdös-Rényi type. All networks have been generated in such
a way that the resulting average node degree was approxi-
mately 3.6. The grid network was organized in 25 rows each
containing 20 nodes.

Throughout this paper, all computer-generated networks
are composed of 500 nodes. Moreover, our homogeneous
parameter settings assume that all �i=0.5 and all Mij =0.5,
where a link from node i to j exists; otherwise Mij =0. The
time delays tij are 	2 distributed, where we have chosen 

=4 for the number of degrees freedom of the 	2 function.
However, the distribution was stretched by multiplying by a
factor 0.05 and shifted by adding the value 1.2 in order to get
an average delay of 
tij�=1.4.

III. MOBILIZATION OF RESOURCES

Let us assume that the emergency forces and all material
flows are entering the affected area continuously in time.
This process can be modeled by a continuous function,
which defines how many resources have reached an affected
area at time t. The shape of this function is an essential point
of our model, because the prompt mobilization of resources
has a strong influence on the efficiency of countermeasures
�24�. Despite the frequent occurrence of disasters, we found
only a few publications that provide detailed information
about the progress of mobilization in time. For example, Fig.
1 shows the manpower and vehicles that were involved in
the recovery activities to fight the Elbe river flooding in Ger-
many in August 2002 �25�. Both curves are quantitatively
similar and can be well approximated using the function
r�t�=a1tb1e−c1t, where a1, b1, and c1 are fit parameters. The
mobilization itself is represented by the growing part of the
curve. To reflect the progress of mobilization of external re-
sources in our simulations, we have used the approximate fit
curve for manpower. In addition to the time progress of the
mobilization, further important parameters are the overall
quantity of external resources R and the response time tD.
The response time is the time interval between the occur-
rence of the initial disastrous event and the first provision of
resources.

The resources used for the recovery are assumed to be
distributed in time according to the manpower data presented
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in Fig. 1. We have normalized the magnitude of this curve
according to the total amount of resources R, keeping its
shape. The time period during which the distribution of re-
sources takes place was set to half of the simulation time
horizon, i.e., 50 time steps.

IV. CRISIS MANAGEMENT AND DISASTER RECOVERY

Disasters are mostly unexpected, and the first moments
after their occurrence are characterized by a high uncertainty
in the estimation of the overall impact. Crisis management
coordinates the work of all emergency units and often has to
take decisions based on scarce information. This requires a
reliable organization in term of information flows �26,27�,
their evaluation, and the choice of appropriate response strat-
egies.

To uncover what information is most important for effi-
cient disaster response, we study here the properties of sev-
eral recovery strategies, allocating the resources to compo-
nents based on different information. As the first kind of
information, let us consider the knowledge of the compo-
nent’s connectivity, i.e., the out-degrees and in-degrees of the
nodes. This information allows one to uncover those compo-
nents that influence most other components and those that
are easily vulnerable, because they have many ingoing links.
As a second kind of information, we assume that the loca-
tions and seriousness of malfunctions in the network are well
known. This information reflects the current level of node
damage and allows one to prioritize the nodes that are more
seriously damaged. Considering these two kinds of informa-
tion, we have formulated the following recovery strategies
Si.

S1, uniform dissemination, i.e., each node gets the same
amount of resources;

S2, out-degree based dissemination, i.e., the resources are
distributed over nodes proportionally to their out-degrees;

S3, uniform reinforcement of challenged nodes, i.e., all
nodes i�N with xi�0 are equally provided with resources;

S4, simple targeted reinforcement of destroyed nodes, i.e.,
damaged nodes �xi��i� are equally provided with resources
with priority, while challenged nodes �xi�0� are uniformly
reinforced if no damaged nodes exist;

S5, simple targeted reinforcement of highly connected
nodes, i.e., a fraction q of highly connected nodes is uni-
formly provided with resources by using the fraction k of all
resources, while the remaining resources are applied accord-
ing to strategy S4;

S6, out-degree-based targeted reinforcement of destroyed
nodes, i.e., application of strategy S4, but with a distribution
of resources proportional to the out-degrees of nodes rather
than a uniform distribution.

Equation �2� represents the mitigation activities in the
nodes by the recovery rates 1 /�i. It models a situation with-
out additional external forces sent to challenged system com-
ponents to perform mitigation actions. Thus, at the beginning
it is assumed that the mitigation activities are weak �1/�i

=1/�start=0.25�, because they are based only on internal re-
sources. If these internal resources are not sufficient to cope
with the evolving disaster, external resources have to be mo-
bilized. The assignment of external resources to a node is
assumed to increase the recovery rate 1 /�i�t� of a node ac-
cording to

1

�i�t�
=

1

��start − �2�e−�2Ri�t� + �2
. �3�

Our model assumes that, once resources have been assigned
to a node, they will remain at the selected node and are not
reassigned again. In Eq. �3�, the cumulative amount of re-
sources assigned to node i is denoted by Ri. The formula
reflects the fact that each new unit of resources has a smaller
effect than the previous one, which is due to the decreasing
efficiency of recovery activities, when the concentration of
forces grows. These effects are well known and may be ex-
plained by increasing efforts for communication and the co-
ordination of forces. The influence of this effect is repre-
sented by the fit parameter �2=0.58. The parameter 1 /�2
=5 defines an upper bound of the recovery rate.

When developing formula �3�, we required the following.
�1� Resources have only a positive influence on the state

of the node. In other words, the function 1/�i should grow
monotonically with the parameter Ri.

�2� When there are no resources applied in node i, i.e.,
Ri=0, then 1/�i=1/�start�0.

�3� Finally, we expect a limited speed of the recovery
process. In fact, for Ri→� we have 1/�i�t�=1/�2�0.

Formula �3� obeys all three conditions, and we expect
qualitatively similar results for all continuous functions sat-
isfying these conditions.
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FIG. 1. Manpower �a� and number of vehicles �b� fighting the
Elbe river flooding in August 2002 �25�. The dashed lines represent
the approximation by the function r�t�=a1tb1e−c1t. The best fit pa-
rameters for manpower �a� are a1=530, b1=1.6, c1=0.22, while for
vehicles �b� they are a1=41, b1=0.66, c1=0.069.
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V. RESULTS OF OUR SIMULATION EXPERIMENTS

We have extensively studied the properties of protection
strategies by means of computer simulations. Due to the ex-
istence of random parameters, such as tij, the results of the
simulation experiments varied with the realizations of the
random variables. Experiments started at time t=0, when the
xi variable of one randomly selected node i was set to the
value �start for 10 time units. Figure 2 shows as an example
how the average number of damaged nodes then develops in
the course of time. The existence of hubs causes the pertur-
bation to propagate much faster in scale-free networks than
in grids, but, on the other hand, the protection strategies
work more efficiently when they can focus on these highly
connected nodes. To assess the behavior of our model, we
have evaluated the most unpleasant scenario, which occurs
when we consider the most unfriendly realization of the ran-
dom parameters. One possible characteristic, which reflects
this worst-case scenario, is the dependence of the minimal
quantity of resources Rmin required to recover the network on
the response time delay tD. It defines a success threshold for
each considered strategy. Except for this, we have evaluated
the average damage of the respective network. Therefore, all
experiments have been performed with the same simulation
time horizon �tS=100�.

A. Worst-case scenario

In this section we determine the minimum required re-
sources Rmin as a function of the response strategy and the
network topology, and we study how Rmin changes when the
response time delay increases. Rmin is the minimum quantity
of resources that guarantees the complete recovery of the
network for each particular scenario. We estimate this quan-
tity by performing a huge number of numerical calculations
separately for each studied network. In each simulation run,
the location of the initial disturbance and the time delays tij
are randomly varied. To obtain Rmin, we use the bisection
method.

As the simplest strategies S1 and S2 do not take into ac-
count the current level of damage, the failures propagate over
the whole network, and the minimum required resources are
independent of the response time delay. The Rmin values are
listed in Table I. Strategy S1 demands the highest disposition
of resources in scale-free structures. This adverse behavior of
scale-free networks arises due to the difficulties in the recov-
ery of hubs and can be eliminated by preferential reinforce-
ment of nodes with high out-degrees �compare the Rmin val-
ues of strategies S1 and S2�.

For the damage-based strategies S3 and S4 �see Fig. 3� we
observe two basic types of behavior. Within the studied range
of response time delays tD, the values of Rmin are either
growing or they stay approximately constant. If they are
growing with tD, the resources are sufficient to repair the
network before the failures affect the whole network. In the
region where Rmin does not change significantly with increas-
ing tD, damage spreads over the whole network. Therefore,
the resources required to restore the failure-free state of the
network are always the same.

Our data show the highest spreading velocity for scale-
free networks and the slowest spreading for regular grids.
The Erdös-Rényi and small-world networks are somewhere
in between, and the transition point between the growing and
the constant parts of Rmin�tD� represents the critical value of
tD beyond which failures paralyze the complete network.

Small-world networks and, to some degree, scale-free net-
works also show a decrease of Rmin for large values of the
response delay time tD, which is surprising �see Fig. 3�a��.
This decrease indicates the unbalanced distribution of re-
sources, where there is a surplus of resources in some nodes
and a deficit elsewhere. The relationship between the veloc-
ity of failure propagation and resource mobilization is crucial
for damage-based protection strategies. The spreading veloc-

TABLE I. Values of Rmin obtained for strategies S1 and S2. The
rows correspond to the different network types: square grid �GR�,
small world �SW�, Erdös-Rényi �ER�, and scale-free �SF�. The vari-
ance in data was obtained by changing tD over values 0, …, 15.

S1 S2

GR 1954 ±25 2223 ±66

SW 1861 ±8 1993 ±4

ER 1701 ±4 1521 ±7

SF 2203 ±0 1205 ±6
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FIG. 2. �Color online� Average number of damaged nodes
�xi��i� for scale-free networks in �a� and regular grid networks in
�b�, applying different protection strategies. Dash-dotted line: no
disposition of resources for recovery. Solid line: strategy S3. Long-
dashed line: strategy S4. Short-dashed line: strategy S5. Dotted line:
strategy S6. The value of the response time was set to tD=8 and the
overall disposition of resources to R=1000 �apart from the dash-
dotted line, where R=0�.
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ity is increased by the existence of a small-world effect,
which is based on the existence of long-range links �short-
cuts�. Over these shortcuts, failures spread very fast to dis-
tant parts of the network. Consequently, the resources must
be distributed over a large area. However, if tD is small, they
are deployed less uniformly, because the majority of re-
sources is deployed during the time when only a small part
of the network is affected by failures. In such situations, we
can find groups of interconnected nodes, which have been
less well provided with resources. Later on, these nodes re-
quire an additional effort to be repaired. In contrast, when tD
is large, the resources are distributed more uniformly and the
overall quantity of resources demanded is smaller.

In practice, this calls for a precise assessment of the
propagation velocity and mobilization rates, which is pos-
sible only when the eventually occurring damages can be
identified in advance. By taking into account information
about the network structure, which determines the possible
sequence of failure occurrence, this problem can be signifi-
cantly reduced �see Fig. 3�b��.

In order to decrease the spreading velocity in scale-free
networks, we suggest applying strategy S5, which stresses the
protection of highly connected nodes. Employing a simple
heuristic algorithm, we have found values of the parameters
k and q that minimize Rmin. The reduction is highest for k
=0.8 and q=0.15 �see Fig. 3�b��. Although strategy S5 uti-
lizes the detailed information about the current damage and
network structure, the values of Rmin for scale-free networks

are larger for small values of tD compared to other networks
treated by strategies S3 and S4. On the other hand, for long
response time delays tD, the smallest disposition of resources
is sufficient to recover scale-free networks.

B. Results for average impact of the different strategies

Before we compare the efficiency of the different disaster
response strategies, we will briefly discuss the influence of
the strategy parameters on the efficiency of the recovery
strategies and take a look at the probabilistic distribution of
damage.

A shortage of resources R or a large response time delay
tD can hardly be compensated for, even by sophisticated pro-
tection strategies. In Fig. 4, we compare the typical damage
when applying strategy S1 or strategy S6. Strategy S6 was
found to be the most efficient one in simulation experiments,
while strategy S1 was the most inefficient one �see below�.
The damage Di related to strategy Si was quantified by the
time integral over the number of destroyed nodes. All results
in this section are expressed through the average damage

Di�, where we varied the initially disturbed node.

Our results show only small differences between the strat-
egies, when tD is large or R is small. However, the overall
damage of strategies S1 and S6 declines when R grows and tD
decreases. The superiority of strategy S6 over strategy S1 is
most significant in the region of large resources R and short
response delays tD. Thus, improvements in the protection
strategy have the highest effect when the response time delay
and the disposition of resources for recovery are within rea-
sonable limits, while late response cannot be compensated
for even by the best strategies. Similar results have been
found for smallpox outbreaks in social networks �24�.

A growing response time delay has a strong impact on the
distribution of damage. When we fix the amount of resources
R and vary tD, the damage 
Di� is typically distributed in the
way shown in Fig. 5. For small values of tD, the recovery
process is able to repair the network in a very short time
�dashed line�. For intermediate values of tD two distinct situ-
ations are observed �dash-dotted�: Depending on the initial
disturbance and on the random parameters, the spreading is
either quickly stopped and the network is recovered, or, the
recovery process is not able to interrupt cascade failure over
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FIG. 3. Minimum quantity of resources Rmin for strategy S3 �a�
and strategy S4 �b� needed to recover a challenged network as a
function of the response time delay tD. Squares correspond to bidi-
rectional grid networks, plus signs to scale-free networks, multipli-
cation signs to Erdös-Rényi networks, and circles to small-world
networks. The inset shows Rmin obtained for scale-free networks
after applying strategy S5 �k=0.8, q=0.15�.
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FIG. 4. �Color online� Relative difference in damage D6,1

= �
D6� / 
D1��100% between the application of the efficient strategy
S6 and the inefficient strategy S1. The dashed line corresponds to
parameter combinations for which the difference between the strat-
egies is 20%, while the solid line corresponds to a difference of
80%. The curves have been obtained by simulations using the bi-
section method.
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the entire network, when the number of infected nodes ex-
ceeds a certain quantity. For R�Rmin, the system is still re-
paired, but much later than for small values of tD. Thus, for
intermediate response time delays we can expect a big dis-
crepancy between the damage in the best and worst case
scenarios. This behavior strongly recalls the initial phase of
real disasters, where an apparently irrelevant event like a
small social conflict, a thrown cigarette, or a delayed dis-
posal of waste can, under similar conditions, either vanish
without any significant impact or trigger riots, forest fires, or
epidemics.

In order to answer the question as to which strategies
are more proper for which kinds of networks, we have
compared the average damage 
Di� for a matrix of
parameter combinations �with tD� �0,4 ,8 ,12,16,20� and
R� �200,500,1000,1500,2000��. As the behavior of small-
world networks is very similar to that of Erdös-Rényi net-
works, we omitted them in Fig. 6. The strategy S5 has been
particularly suited for scale-free networks to reach the mini-
mum disposition of resources required for network recovery.
This strategy is most efficient for values of R close to Rmin.
For Erdös-Rényi, small-world, and grid networks, the suc-
cess of this strategy depends on the respective values of R.
Strategy S5 is relatively effective when R is small and tD is
large �note that for this combination of parameters the differ-
ences between the strategies are very small; see Fig. 4�.
However, when R is large, strategy S5 performs poorly, due
to the excessive provision of resources to a small group of
nodes, regardless of the damage. The most universal and also

most effective of all investigated strategies is strategy S6. On
the other hand �together with strategy S5�, it also requires the
most detailed information.

The overall results of our comparison can be summarized
as follows: If we have the option to choose whether to orient
the disaster recovery strategy at the network structure or at
the current damage, then regular grids with a small spreading
velocity are protected best by strategies reacting to the level
of damage. In contrast, for scale-free networks it is more
effective to take the network structure into account. The
choice of the proper strategy for Erdös-Rényi and small-
world structures depends on the response time delay. For
short time delays, there is a good chance to reduce the
spreading by preferential protection of damaged nodes, but
when the time delay is large and many nodes have already
been affected, the damage is minimized by protection of
nodes with high out-degrees.

VI. CONCLUSIONS

Disaster recovery and the operation of interconnected in-
frastructures involve an intricate decision making where each
action can invoke a variety of hardly predictable reactions.
Here the network type plays an important role, and the
theory of complex systems and the statistical physics of net-
works offer powerful methods. These allow one to gain a
better understanding of the dynamics of disaster spreading
and to derive valuable results indicating how to fight them
best.

In this paper, we have specifically studied the efficiency
of several strategies to distribute resources for the recovery
of disaster-struck networks. These strategies use information
about the network structure and knowledge about the current
damage. As the main parameters, we have considered the
overall quantity of resources R and the response time delay
tD. By means of simulations, we have determined the mini-
mum disposition of resources that is necessary to stop disas-
ter spreading and recover from it. The behavior of scale-free
networks was found to be ambiguous. In comparison with
other network structures, the highest quantity of resources
for recovery is needed in case of small response time delays,
while the required disposition of resources is smallest for
large time delays.

When the response time delay and disposition of re-
sources are within reasonable limits, the optimization of pro-
tection strategies has the largest effect. Furthermore, strate-
gies oriented at the network structure are efficient for scale-
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FIG. 5. �Color online� Cumulative probability distribution of the
overall damage 
D6� of strategy S6 for a sample of numerical ex-
periments for Erdös-Rényi networks with a fixed disposition of re-
sources R=1000 and different values of tD. The dashed line corre-
sponds to tD=0, the dash-dotted line to tD=8, and the solid line to
tD=16.
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FIG. 6. �Color online� Most
efficient strategies of disaster re-
covery based on the evaluation of
average damage. �a� was obtained
for grid networks, �b� for scale-
free networks, and �c� for Erdös-
Rényi networks.
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free networks, while strategies based on the damage are more
appropriate for regular grid networks. The suitable strategy
for Erdös-Rényi and small-world networks depends on the
response time delay. In the case of short time delays, the
damage reduction is higher for damage-based strategies,
whereas strategies oriented at information about the network
structure are better for large response time delays. Therefore,
we expect that the properties of response strategies could be
further improved by switching between different strategies in

time. This will be a subject of our forthcoming investiga-
tions.

ACKNOWLEDGMENTS

The authors are grateful for partial financial support
by the German research foundation �DFG Project No.
He 2789/6-1� and the EU projects IRRIIS and
MMCOMNET.

�1� J. Davidsen, H. Ebel, and S. Bornholdt, Phys. Rev. Lett. 88,
128701 �2002�.

�2� A. E. Motter and Y. C. Lai, Phys. Rev. E 66, 065102�R�
�2002�.

�3� V. Rosato and F. Tiriticco, Europhys. Lett. 66, 471 �2004�.
�4� M. E. J. Newman, S. Forrest, and J. Balthrop, Phys. Rev. E 66,

035101�R� �2002�.
�5� V. Kalapala, V. Sanwalani, A. Clauset, and Ch. Moore, Phys.

Rev. E 73, 026130 �2006�.
�6� Z. Dezso and A. L. Barabasi, Phys. Rev. E 65, 055103�R�

�2002�.
�7� R. Pastor-Satorras and A. Vespignani, Phys. Rev. E 65,

036104 �2002�.
�8� J. Goldenberg, Y. Shavitt, E. Shir, and S. Solomon, Nat. Phys.

1, 184 �2005�.
�9� R. Cohen, S. Havlin, and D. ben-Avraham, Phys. Rev. Lett.

91, 247901 �2003�.
�10� A. O. Stauffer and V. C. Barbosa, Phys. Rev. E 74, 056105

�2006�.
�11� A. E. Motter, Phys. Rev. Lett. 93, 098701 �2004�.
�12� M. Schäfer, J. Scholz, and M. Greiner, Phys. Rev. Lett. 96,

108701 �2006�.
�13� A. L. Tuson, R. Wheeler, and P. Ross, in Proceedings of the

15th Workshop of the UK Planning and Scheduling Special
Interest Group �University of Liverpool, Liverpool, 1996�.

�14� P. Fiorucci, F. Gaetani, R. Minciardi, R. Sacil, and E. Tras-
forini, in Proceedings of 15th International Workshop on Da-
tabase and Expert Systems Applications �IEEE Computer So-
ciety, Washington, 2004�, p. 603.

�15� E. G. Altmann, S. Hallerberg, and H. Kantz, Physica A 364,
435 �2006�.

�16� D. Helbing, H. Ammoser, and C. Kühnert, in The Unimagin-
able and Unpredictable: Extreme Events in Nature and Soci-
ety, edited by S. Albeverio, V. Jentsch, and H. Kantz �Springer,
Berlin, 2005�.

�17� D. Helbing and C. Kühnert, Physica A 328, 584 �2003�.

�18� E. I. Papageorgiou, E. P. Konstantinos, S. S. Chrysostomos, P.
P. Groumpos, and M. N. Vrahatis, J. Intell. Inf. Syst. 25, 95
�2005�.

�19� L. Buzna, K. Peters, and D. Helbing, Physica A 363, 132
�2006�.

�20� The function f�Oj�= �aOj� / �1+bOj� is motivated by the as-
sumption that the impact of highly connected nodes is distrib-
uted among many neighboring nodes and, therefore, may de-
crease with the out-degree Oj. A simple linear dependence
would be more appropriate in cases when the spreading de-
pends on the transmission of some conserved quantity as, for
example, in electrical circuits or road traffic. However, in some
cases the spreading does not obey any conservation law, as for
the spreading of forest conflagrations or epidemics. Since we
do not consider any concrete scenario in this paper, we decided
to use a formula that is more general than a linear function.
Other decaying functions in Oj are expected to have qualita-
tively similar effects.

�21� B. Bollobas, C. Borgs, J. Chayes, and O. Riordan, in Proceed-
ings of the 14th ACM-SIAM Symposium on Discrete Algo-
rithms (SODA) �SIAM, Baltimore, 2003�, p. 132.

�22� T. Murai, MS. thesis, Aoyama Gakuin University, Japan, 2003.
�23� D. J. Watts and S. H. Strogatz, Nature �London� 393, 440

�1998�.
�24� S. Eubank, H. Guclu, V. S. A. Kumar, M. V. Marathe, A.

Srinivasan, Z. Toroczkai, and N. Wang, Nature �London� 429,
180 �2004�.

�25� H. P. von Kirchbach, S. Franke, H. Biele, L. Minnich, M.
Epple, F. Schafer, F. Unnasch, M. Shuster, Bericht der Unab-
hängigen Kommission der Sächsischen Staatregierung Flut-
katastrophe 2002 �unpublished�.

�26� D. Helbing, H. Ammoser, and C. Kühnert, Physica A 363, 141
�2006�.

�27� D. Stauffer and P. M. Oliveira, Int. J. Mod. Phys. C 17, 09,
1367 �2006�.

EFFICIENT RESPONSE TO CASCADING DISASTER… PHYSICAL REVIEW E 75, 056107 �2007�

056107-7


